
File System Writeup
Bierman’s Baddies

Avinh Huynh - 923666650
Hilary Lui - 922142725

Jacob Vazquez- 923077698
Lita Hernandez-Gonzalez - 921182337

Casey Steven - 921956643

Github: Jacob9610

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Table Of Contents:
Description:...4

Approach:..5

Freespace Approach:.. 5

Freespace Approach 1:... 5

Freespace Approach 2:... 8

Directory Approach:..11

Function Name: loadDir..11

Function Name: writeDir.. 12

Function Name: parsePath..13

Function Name: findInDir..14

Approach mfs..15

Function Name: fs_mkdir..15

Function Name: fs_rmdir.. 16

Function Name: fs_delete...17

Function Name: fs_mov..18

Function Name: fs_getcwd... 19

Function Name: fs_setcwd..20

Purpose:..20

Input Parameters:... 20

Processing Details:.. 21

Return Values:...21

Output:..22

Edge Cases:... 22

Key Assumptions:..22

Function Name: fs_isFile...22

Function Name: fs_isDir..23

Milestones:..29

Milestone 1:.. 29

1. A dump (use the provided HexDump utility) of the volume file that shows the VCB,
FreeSpace, and complete root directory...29

Milestone 2: File System Operations.. 37

Key File System Operations to Implement.. 37

Functions to Implement..38

Interrelationships Between Functions.. 40

2

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

The core interactions between these functions can be visualized as follows:..................40

● Directory Management: Functions like fs_opendir, fs_readdir, and fs_closedir form a
directory handling subsystem. fs_opendir opens a directory, fs_readdir reads its
contents, and fs_closedir frees resources when done..40

● Path Management: Functions like fs_setcwd, fs_getcwd, fs_isFile, and fs_isDir rely on
parsing the path and identifying whether it's a file or directory. These functions interact
with the directory structure to provide information about file system state................... 40

● File Manipulation: fs_mkdir, fs_delete, and fs_rmdir manipulate files and directories by
adding or removing entries in the file system...40

Conclusion.. 40

By implementing these functions, we will provide essential file system capabilities that
are necessary for the shell to interact with directories and files. Functions for
manipulating directories, obtaining file information, and managing the current working
directory will be crucial for the next steps in developing the file system's command-line
interface..40

Milestone 3:.. 41

Functions to Implement..41

Issues and Resolutions:..43

General Issues:..43

Time_t:..43

Could not initialize freespace:...44

Global Variables showing undefined:..45

Freespace Issues:.. 47

Directory Issues:... 48

Make Dr not updating the parent dir with child info.. 48

fs_readdir not implemented correctly..49

B_io issues:... 54

Analysis:.. 56

VolumeControlBlock: 1st block... 57

DirectoryEntries: 2nd-3rd block..60

Screen shot of compilation:... 65

make:.. 65

Screen shot(s) of the execution of the program:...66

make run...66

ls..67

CP..68

MV.. 68

MD.. 70

3

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

RM.. 71

TOUCH.. 72

CAT.. 73

CP2L.. 73

Screen shot(s) of the Analysis hexdump:.. 74

4

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

File System Writeup

Description:
We are building a file system where we will need to format a volume, create and maintain a free
space management system, initialize a root directory and maintain directory information,
create, read, write, and delete files, and display info.

5

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Approach:

Freespace Approach:

Freespace Approach 1:

6

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
The last attempt iterated through every value of freespace to a valid extent. When a valid extent
was found, it would iterate through the target extent array to find where to place it. Then it
would delete the original value in freespace we just moved. In order to delete it, it iterated
backwards through freespace to pop the last value and replace our original with that.

Each Iteration:

Moving Extent to Target:

Pop last freespace:

7

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Result:

Now we have one extent moved over, and we can continue iteration. Since we just popped, we
can keep the freespace index the same and then test it for contiguousBlock requirement.

However, this approach doesn’t work because of buffers. When implementing this, there were
issues with buffers for the pop pointer and the freespace pointer. The way it was implemented
before would force me to LBAread everytime I popped and to check if the buffers were the
same to know to LBAread or not. This could mean upwards of 3 LBAreads per iteration. Seeing
this, I scrapped the idea and started from the beginning.

8

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Freespace Approach 2:

In the second attempt, I wanted to encapsulate all of the Extent functions to be handled by an
ExtentController, and then my allocate blocks function would only have to work with that.

These simple functions would have their own
ExtentController data structure that would handle
buffers, blocks, tertiarys, if they were ever empty
or full. Then I could treat the extents as an
arraylist and use the same pseudocode as above.

With only these functions, I was able to type out
the pseudocode for allocateBlocks and then write
it out in vscode.

ExtentController Original:

There would be an ExtentController (EC) to replace the target pointer, freespace pointer, and
pop pointer. Then the data structure would manage their own buffers. The ExtentController
have changed since then, and to see the rest of the pseudocode see Freespace Issues.

Continue in Freespace Issues

9

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

AllocateBlocks Original:
AllocateBlocks(int remainingBlocks, int contiguousBlocks, Extent *target):

/* Error checking for inputs here */

VolumeControlBlock vcb = malloc()
lbaRead(vcb, 0, 1)

/* Error checking for malloc and lbaRead here */

target = &target.getLast().getNext() // target (where to write to)
Extent *fs = vcb.freespace[0] // freespace (where to write from)
Extent *end = vcb.freespace[0].getLast() // last value of fs (used to delete fs)

while(0):
if (fs.blockCount >= remainingBlocks): // add this extent

if (remainingBlocks >= fs.blockCount): // add the whole extent

// set target := fs (the values and not the pointer)
target.blockCount = fs.blockCount
target.location = fs.location

// update target
target = target.getNext()

// update remainingBlocks
remainingBlocks -= fs.blockCount

// delete fs and replace it with a new value
fs.blockCount = end.blockCount
fs.location = end.location

// replace end
if (// check if replacing this will make it the same block as fs

end.arrayIndex == 0 AND
end.blockNumber == fs.blockNumber + 1

):
free(end.arrray)
// share the same buffer so fs can handle lbaWrite
end.array = fs.array
end.blockNumber = end.blockNumber - 1
end.arraySize = g_blocksize / sizeof(Extent)
end.arrayIndex = arraySize - 1
end.end = array[arrayIndex]

else:

10

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

end = end.getPrevious()

// update index to retry this index
fs.index -= 1

else: // allocate only part of the block

// set target to only part of fs
target.blockCount = remainingBlocks
target.location = fs.location

// update fs to reflect part has been allocated
fs.blockLocation += remainingBlocks
fs.blockCount -= remainingBlocks

// update remainingBlocks
remainingBlocks = 0

// if we are done allocating (can occur from partial allocation or
// allocating exactly from a whole extent)
if remainingBlocks = 0:

free(target)
free(fs)
free(end)

return 0

// Either we allocated one extent and we still have remaining blocks or the extent
// wasn’t big enough for contiguous blocks. Iterate fs to next.
fs = fs.getNext()

if (fs.getNext() = -1):

If end.getPrevious runs into fs.getNext()

if end.getPrevious is one block and fs.getNext() is another

check if they are equal, and one more after that throw an error

11

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Directory Approach:

Function Name: loadDir

Purpose:
The loadDir function dynamically loads the content of a directory into memory. It performs
several validation checks to ensure that the provided input is a valid directory and then
allocates sufficient memory to hold the directory's data. The data is read from disk using
block-based I/O.

Input Parameters:

● entry: A pointer to a DirectoryEntry structure that identifies the directory to
load. If this parameter is NULL or points to a file rather than a directory, the function
will return NULL.

Processing Details:

1. The function checks whether the provided DirectoryEntry is NULL or represents
a file (entry->isDir == 'F'). If either condition is true, it returns NULL.

2. It calculates the number of blocks needed to hold the directory based on its size and
the global block size (g_blockSize).

3. The total memory required for the directory is computed and dynamically allocated
using malloc.

4. The LBAread function is used to read the directory data from the disk into the
allocated memory.

Output:
The function returns a pointer to a newly allocated DirectoryEntry structure containing
the loaded directory data. If the input is invalid, it returns NULL.

Edge Cases:

● If the input is NULL or points to a file, the function does not proceed with loading and
safely returns NULL.

● The function assumes that the directory data does not exceed the bounds of the disk
storage.

12

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
Function Name: writeDir

Purpose:
The writeDir function writes the data for a directory to the filesystem, ensuring that it is
stored persistently on the disk.

Input Parameters:

● dir: A pointer to a DirectoryEntry structure containing the directory's metadata,
including its size and the starting block location.

Processing Details:

1. Block Calculation:
The function calculates the number of blocks required to store the directory using the
formula:

This accounts for potential alignment with the block size.
2. Data Writing:

The LBAwrite function is used to write the directory data to the specified starting
block. The return value from LBAwrite indicates the number of blocks successfully
written.

3. Diagnostic Output:
The function prints debugging information, including the size of the directory, the
global block size, and the return value from LBAwrite.

Output:
The function does not return a value but provides diagnostic output to verify that the
directory was written successfully.

Edge Cases:

● The directory's size must not exceed the maximum capacity of the allocated blocks. If
this is a possibility, additional validation should be added.

Key Assumptions:

● The LBAwrite function correctly handles writing the data to the specified blocks.
● The directory's starting block location and size are accurately set in the

DirectoryEntry structure.

13

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
Function Name: parsePath

Purpose:
To parse and resolve a file path in the custom filesystem, identifying its parent directory and
the location of the target element.

Input Parameters:

● path: The file path as a string. Must begin with / for root-based paths or relative
otherwise.

● retParent: A pointer where the function stores the resolved parent directory of the
target element.

● retIndex: A pointer to an integer where the index of the target element within its
parent directory is stored.

● lastElementName: A pointer to a string to store the name of the last element in
the path.

Processing Details:

1. Path Validation:
The function ensures the path is neither NULL nor empty. If invalid, it returns -1.

2. Starting Directory:
Determines whether to begin traversal from the root directory (g_root) or the
current working directory (g_cwd), based on whether the path starts with /.

3. Tokenization:
Uses strtok_r to split the path into tokens, processing each component iteratively.

4. Directory Traversal:
○ Looks up each token in the current directory using findInDir.
○ Validates if the current token refers to a directory. If it's a file, traversal stops

with an error.
5. Parent Directory Resolution:

If the last token is reached, the function stores the parent directory, index of the last
element, and the element's name in the provided pointers.

6. Dynamic Memory Management:
Frees the old parent directory and loads the new one during traversal.

Output:

● On success, the function updates the retParent, retIndex, and
lastElementName with the resolved values and returns 0.

● Returns -1 if the path cannot be resolved (e.g., file not found, invalid path).

Edge Cases:

● Input path is /, resulting in the root directory being returned as the parent.

14

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

● Paths containing non-existent elements or invalid tokens (e.g., referencing files as
directories).

Key Assumptions:

● The findInDir and loadDir helper functions correctly resolve directory entries
and handle dynamic memory operations.

Function Name: findInDir

Purpose:
Searches for a specified entry by name within a directory's entries and returns its index.

Input Parameters:

● dir: A pointer to the array of DirectoryEntry structs representing the directory
to search within.

● name: The name of the entry to locate within the directory.

Processing Details:

1. Validation:
Ensures the dir pointer and name string are not NULL. If either is invalid, the function
returns -2.

2. Number of Entries:
Computes the number of directory entries using the size field in the first entry of the
dir array.

3. Iteration:
○ Iterates through each directory entry.
○ Checks if the directory entry is marked as used using the helper function

dirEntryUsed.
○ Compares the entry's name with the provided name using strcmp.

4. Return Matching Index:
If a match is found, the index of the matching entry is returned.

5. Entry Not Found:
If no match is found after iterating through all entries, the function returns -1.

Output:

● Index of the matching directory entry if found.
● -1 if the entry is not found in the directory.
● -2 if the input directory or name is invalid.

Edge Cases:

● If the directory is empty, the function will return -1.

15

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

● If the directory or name is NULL, the function will return -2.

Key Assumptions:

● The dirEntryUsed function correctly identifies whether a directory entry is valid
and in use.

● The dir array is properly formatted, with the first entry containing size information.

Approach mfs

Function Name: fs_mkdir

Purpose:
Creates a new directory at the specified path by validating the path, locating the parent
directory, and populating a new directory entry in the parent directory.

Input Parameters:

● pathname: The full path where the directory is to be created. This path includes the
name of the new directory as its last element.

● mode: (Currently unused) Specifies the permissions for the directory.

Processing Details:

1. Path Parsing:
○ Uses parsePath to validate the given path and identify the parent directory

and the name of the new directory.
○ If parsePath fails (returns -1), the function exits early, as the path is invalid

or does not exist.
2. Directory Existence Check:

○ If the directory already exists in the parent directory (i.e., index is not -1),
the function exits with an error.

3. Directory Creation:
○ Calls createDir to allocate and initialize the new directory structure.
○ Finds an unused directory entry slot in the parent directory using the helper

function dirEntryUsed.
○ Populates the unused slot with the newly created directory's metadata and

assigns it the provided name.
4. Parent Directory Update:

○ Updates the parent directory to reflect the new directory entry.
○ Writes the updated parent directory to storage using writeDir.

5. Return Values:
○ Returns 0 on successful directory creation.
○ Returns -1 if the path is invalid or the directory already exists.

16

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
Output:

● A newly created directory at the specified location within the file system.

Edge Cases:

● If the path ends in a separator (e.g., /), the function creates a directory at the root or
the current working directory.

● Handles the case where all directory entries in the parent are already in use.

Key Assumptions:

● parsePath, createDir, and dirEntryUsed are implemented correctly and
handle edge cases.

● Parent directories are large enough to accommodate additional entries.

Function Name: fs_rmdir

Purpose:
Deletes an existing directory from the file system by removing its directory entry and freeing
the blocks allocated to it.

Input Parameters:

● pathname: The full path of the directory to be removed.

Processing Details:

1. Path Parsing:
○ Uses parsePath to locate the directory and its parent.
○ Validates the path and retrieves the index of the directory entry in its parent.

2. Validation:
○ Checks if the specified path points to a directory using fs_isDir.
○ If the path is invalid, or the target is not a directory, the function returns an

error.
3. Directory Removal:

○ Calls freeBlocks to release the storage blocks allocated to the directory.
○ Marks the directory entry as unused by setting its isDir attribute to 'N'.

4. Parent Directory Update:
○ Updates the parent directory to reflect the removed entry.
○ Writes the updated parent directory back to storage using writeDir.

5. Return Values:
○ Returns 0 on successful directory removal.
○ Returns -1 if:

■ The path is invalid.
■ The specified target is not a directory.

17

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

■ Other errors occur during the process.

Output:

● The directory at the specified path is deleted from the file system.

Edge Cases:

● If the directory is not empty, additional validation may be needed to prevent its
removal (not implemented here).

● Handles invalid paths gracefully without crashing.

Key Assumptions:

● parsePath, fs_isDir, and freeBlocks are implemented correctly.
● The parent directory has sufficient capacity to be updated without causing additional

issues.

Function Name: fs_delete

Purpose:
Removes a file from the file system by releasing its storage blocks and marking its entry in the
parent directory as unused.

Input Parameters:

● filename: The full path to the file that needs to be deleted.

Processing Details:

1. Path Parsing:
○ Uses parsePath to find the file and its parent directory.
○ Retrieves the index of the file entry in the parent directory and its name

(lastElementName).
2. Validation:

○ Confirms the path is valid. If parsePath fails, the function returns an error.
○ Verifies that the target is a file, not a directory, using fs_isDir. If the target

is a directory, the function returns an error.
3. File Deletion:

○ Calls freeBlocks to release the allocated storage blocks for the file.
○ Updates the directory entry to indicate it is unused by setting its isDir

attribute to 'N'.
4. Parent Directory Update:

○ Updates the parent directory after marking the entry unused.
○ Writes the updated parent directory back to storage using writeDir.

5. Return Values:

18

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

○ Returns 0 on successful deletion.
○ Returns -1 if:

■ The path is invalid.
■ The target is not a file.
■ Errors occur during the process.

Output:

● The specified file is removed from the file system.

Edge Cases:

● Ensures that an attempt to delete a directory instead of a file is correctly flagged as an
error.

● Handles invalid paths gracefully without crashing.

Key Assumptions:

● parsePath, fs_isDir, and freeBlocks functions are implemented correctly.
● Parent directories can be safely updated without additional complications.

Function Name: fs_mov

Purpose:
Relocates a file from a source path to a destination directory within the file system.

Input Parameters:

● filename: The path to the file that needs to be moved.
● pathname: The path to the target directory where the file will be moved.

Processing Details:

1. Path Parsing:
○ Uses parsePath to locate the source file (filename) and the destination

directory (pathname).
○ Retrieves parent directory pointers (parent1, parent2), indices (index1,

index2), and the last element names (lastElementName1,
lastElementName2) for both paths.

2. Validation:
○ Confirms both paths are valid.
○ Ensures the source path (filename) is a file and not a directory using

fs_isDir.
○ Verifies the destination path (pathname) is a directory.

3. Destination Directory Handling:
○ Loads the destination directory's entries into memory.

19

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

○ Identifies the first available (unused) entry in the destination directory for
placing the file.

4. File Move:
○ Copies the source file's metadata from the parent directory's entry

(parent1[index1]) into the destination directory's unused entry.
○ Updates the destination directory to reflect the new entry.

5. Post-Move Update:
○ The parent directory of the source file is updated to mark its entry as unused.

6. Return Values:
○ Returns 0 on successful completion.
○ Returns -1 if:

■ Either path is invalid.
■ The source is a directory instead of a file.
■ The destination is not a directory.
■ Other errors occur during the process.

Output:

● The file is removed from its original location and added to the destination directory.

Edge Cases:

● Handles scenarios where the source path or destination path is invalid.
● Ensures the target file isn’t overwritten by mistake by checking for unused directory

entries.

Key Assumptions:

● Functions like parsePath, fs_isDir, and dirEntryUsed work as expected.
● The destination directory can accommodate the new entry without requiring

expansion.

Function Name: fs_getcwd

Purpose:
Provides the current working directory's path to the calling process, storing it in a
user-provided buffer.

Input Parameters:

● pathname: A pointer to a buffer where the current working directory path will be
copied.

● size: The size of the buffer, ensuring it can safely hold the directory path without
causing overflow.

20

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
Processing Details:

1. Path Copying:
○ Copies the path stored in the global variable g_cwd_path into the provided

pathname buffer using strncpy.
○ Ensures that the number of bytes copied does not exceed the buffer size

(size).
2. Return Value:

○ On success, returns the pathname pointer containing the current working
directory's path.

○ If the operation fails (though none is explicitly handled here), typically NULL
would be returned.

3. Buffer Safety:
○ The use of strncpy ensures that the function respects the buffer size (size)

and prevents buffer overflows.

Output:

● The function writes the current working directory path to the buffer pointed to by
pathname.

Edge Cases:

● The function does not validate whether the pathname buffer is large enough to hold
the full path. If size is smaller than the length of g_cwd_path, the resulting string
will not be null-terminated, leading to potential undefined behavior.

Key Assumptions:

● g_cwd_path is a valid, null-terminated string representing the current working
directory path.

● The calling function provides a sufficiently large buffer for the directory path.

Function Name: fs_setcwd

Purpose:

Sets the current working directory to the specified path by validating and processing the path,
then updating global variables representing the current working directory.

Input Parameters:

● pathname: The path of the directory that should be set as the current working
directory.

○ Type: char*

21

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

○ Constraints: This path must be valid, pointing to an existing directory. The path
can be either absolute (starting with /) or relative.

Processing Details:

● Path Parsing:
○ The function calls parsePath to process the given pathname. This function

attempts to locate the directory and gather details like the parent directory and
index of the directory in the file system structure.

○ If parsing fails or the path is invalid, the function returns -1.
● Directory Validation:

○ The function checks whether the path points to a directory by verifying the
isDir field in the directory entry.

○ If the path is not a directory, an error message is printed, and the function
returns -1.

● Directory Load:
○ If the path is valid and points to a directory, the loadDir function is called to

load the directory's contents into memory.
○ If the directory fails to load, the function prints an error and returns -1.

● Global CWD Update:
○ The global variable g_cwd is updated to the newly loaded directory, making it

the current working directory.
● Path Update:

○ The global variable g_cwd_path is updated based on the provided
pathname.

○ If the path is absolute, g_cwd_path is directly set to pathname.
○ If the path is relative, the function appends the last element of the parsed path

to g_cwd_path.
● Path Simplification:

○ The function performs path normalization by handling special cases like .
(current directory) and .. (parent directory). These are processed using
strtok_r to break the path into tokens and resolve any redundant or relative
components.

○ After resolving these elements, the function builds the new, simplified
g_cwd_path.

Return Values:

● 0: The current working directory is successfully set.
● -1: If any of the following conditions occur:

○ The path is invalid.
○ The path does not point to a directory.
○ An error occurs while loading the directory.

22

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
Output:

● g_cwd: The global current working directory is updated to the new directory.
● g_cwd_path: The global path is updated to reflect the new working directory, with

normalization applied to handle redundant elements in the path.

Edge Cases:

● Invalid Path: If the path does not exist or cannot be parsed, the function will return -1.
● Non-directory Path: If the path does not point to a directory, the function will report

an error.
● Relative Path Handling: The function correctly handles relative paths and resolves

elements like . and .. appropriately.

Key Assumptions:

● The helper functions parsePath, loadDir, and strtok_r work as expected.
● The global variables g_cwd and g_cwd_path are properly initialized and managed

elsewhere in the system.

Function Name: fs_isFile

Purpose:
Determines whether a given pathname points to a file (not a directory).

Input Parameters:

● filename: The path of the file to check. It can be either absolute or relative.

Processing Details:

● Path Parsing:
The function uses parsePath to resolve the provided filename into a directory entry,
obtaining the parent directory, index, and last element name.

● Path Validation:
If parsePath fails (returns -1), the function prints an error message and returns 0.

● Index Lookup:
The findInDir function is used to search for the entry corresponding to the last
element of the filename within the directory. If found, the index of the file is obtained.

● File Type Check:
The function checks the isDir attribute of the directory entry at the specified index.
If isDir == 'F', it indicates a file and returns 1. Otherwise, it returns 0.

Return Values:

● 1 if the specified path points to a file.

23

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

● 0 if the specified path does not point to a file or if any errors occur (e.g., invalid path).

Edge Cases:

● The function handles invalid paths by returning 0 and printing an error message if
parsePath cannot find the pathname.

● If the path points to a directory or an invalid file type, it returns 0.

Key Assumptions:

● The parsePath and findInDir functions work as expected and correctly resolve
the file's path and directory entries.

● The isDir field of DirectoryEntry accurately represents the type of the file
system entry.

Function Name: fs_isDir

Purpose:
Determines whether a given pathname points to a directory (not a file).

Input Parameters:

● pathname: The path of the directory to check. It can be either absolute or relative.

Processing Details:

● Path Parsing:
The function uses parsePath to resolve the provided pathname into a directory
entry, obtaining the parent directory, index, and last element name.

● Path Validation:
If parsePath fails (returns -1), the function prints an error message and returns 0.

● Index Lookup:
The findInDir function is used to search for the entry corresponding to the last
element of the pathname within the directory. If found, the index of the directory is
obtained.

● Directory Type Check:
The function checks the isDir attribute of the directory entry at the specified index.
If isDir == 'T', it indicates a directory and returns 1. Otherwise, it returns 0.

Return Values:

● 1 if the specified path points to a directory.
● 0 if the specified path does not point to a directory or if any errors occur (e.g., invalid

path).

Edge Cases:

24

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

● The function handles invalid paths by returning 0 and printing an error message if
parsePath cannot find the pathname.

● If the path points to a file or an invalid directory type, it returns 0.

Key Assumptions:

● The parsePath and findInDir functions work as expected and correctly resolve
the directory's path and entries.

● The isDir field of DirectoryEntry accurately represents the type of the file
system entry.

Function Name: fs_opendir

Purpose:
Opens a directory specified by the given path and prepares it for iteration. The function loads
the directory's entries and provides a file descriptor structure that can be used to iterate over
the directory's content.

Input Parameters:

● pathname: The path to the directory that needs to be opened. The path should point
to an existing directory.

Processing Details:

● Path Parsing:
The function calls parsePath to parse the given path (pathname). It retrieves
pointers to the parent directory, the index of the last element, and the last element's
name in the directory structure.

● Directory Validation:
The directory is checked for validity by verifying the parsed path. If the path is invalid,
the function logs an error message and returns NULL.

● Directory Entry Loading:
After validating the path, the function calls loadDir to load the directory's entries
into memory. It then calculates the number of entries in the directory by dividing the
directory size by the size of a DirectoryEntry.

● File Descriptor Creation:
The function allocates memory for an fdDir structure. This structure contains:

○ A pointer to the loaded directory entries (directory).
○ The number of entries in the directory (d_reclen).
○ A pointer to a fs_diriteminfo structure that holds directory item

information.
○ The current position within the directory (dirEntryPosition).

Return Values:

25

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

● Returns a pointer to an fdDir structure on success. The structure contains the
directory's entries and metadata for iteration.

● Returns NULL if there is an error in parsing the path or loading the directory.

Edge Cases:

● The function handles cases where the provided pathname is empty or invalid. If the
pathname is invalid, it logs an error and returns NULL.

● It assumes the directory entries can fit in memory and does not handle cases where
the directory is too large to load.

Key Assumptions:

● The parsePath function correctly resolves the path and provides valid pointers and
indices.

● The loadDir function is capable of loading the directory entries into memory
correctly.

● The directory size is appropriate for the number of entries it contains, as the function
calculates the number of entries by dividing the directory size by the size of each
directory entry.

Function Name: fs_readdir

Purpose: Reads the next directory entry from the directory stream and returns the associated
file or directory information.

Input Parameters:

● dirp: A pointer to a fdDir structure, which contains the current position and
directory entries for iteration.

Processing Details:

Directory Entry Processing:

● The function checks the type of the directory entry at the current position
(dirp->dirEntryPosition).

○ If the entry is a directory (isDir == 'T'), the function sets the fileType
in the fs_diriteminfo structure to FT_DIRECTORY, copies the entry's
name, and sets the record length based on the entry's size.

○ If the entry is a regular file (isDir == 'F'), it similarly sets the fileType
to FT_REGFILE, copies the name, and calculates the record length.

○ If the entry type is unrecognized, it sets the entry's name to an empty string.

End of Directory:

26

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

● If the current directory entry position matches the total number of entries
(dirp->dirEntryPosition == dirp->d_reclen), the function sets the
fs_diriteminfo pointer to NULL, signaling the end of the directory stream.

Return Values:

● Returns a pointer to a populated fs_diriteminfo structure containing the current
directory entry's name, type, and record length.

● Returns NULL when the end of the directory is reached.

Output:

● The directory entry data is copied into the fs_diriteminfo structure for further
processing or use.

● The dirp->dirEntryPosition is incremented to point to the next directory
entry for the next call.

Edge Cases:

● Handles directories and regular files separately.
● If the directory stream reaches the end, it returns NULL.

Key Assumptions:

● Assumes that the fdDir structure and fs_diriteminfo are properly initialized.
● Assumes the isDir field in the DirectoryEntry structure correctly identifies the

type of entry (T for directory, F for regular file).

Function Name: fs_closedir

Purpose: Closes the directory stream, releases memory, and resets the directory pointer to
prevent memory leaks.

Input Parameters:

● dirp: A pointer to a fdDir structure, representing the directory stream that needs
to be closed.

Processing Details:

● The function first checks if the dirp pointer is NULL. If it is, the function returns -1,
indicating an error, as it is not possible to close a NULL directory stream.

● If dirp is valid, the function:
○ Sets the directory field in the fdDir structure to NULL.
○ Sets the dirp pointer itself to NULL to ensure it no longer points to the

now-freed memory.

27

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

○ Frees the memory allocated for dirp, releasing the resources associated with
the directory stream.

Return Values:

● Returns 0 on success, indicating that the directory stream was successfully closed.
● Returns -1 if the input dirp is NULL, indicating an invalid directory stream.

Output:

● The memory associated with the directory stream is deallocated, ensuring that
resources are properly released and no memory leak occurs.

Edge Cases:

● Handles the case where the dirp pointer is NULL and prevents further operations on
an invalid directory stream.

Key Assumptions:

● Assumes that the fdDir structure was previously allocated and initialized correctly.
● Assumes that memory management (e.g., using malloc or free) is correctly

handled outside of this function.

Function Name: fs_stat

Purpose: Retrieves and stores file statistics for a specified file or directory in the fs_stat
structure.

Input Parameters:

● path: A string representing the path of the file or directory whose statistics need to
be retrieved.

● buf: A pointer to an fs_stat structure where the file statistics (e.g., access time,
modification time, size, etc.) will be stored.

Processing Details:

● The function first uses parsePath to resolve the path, returning a pointer to the
parent directory, the index of the entry, and the last element in the path.

○ If the path is invalid or parsing fails (check == -1), the function returns -1
to indicate an error.

● The function then loads the directory entry corresponding to the path using loadDir.
● Once the directory entry is loaded, the following statistics are populated into the

fs_stat structure (buf):
○ st_accesstime: Set to the last accessed time of the file or directory.

28

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

○ st_blocks: The number of blocks the file or directory occupies, calculated
based on its size and the block size (g_blockSize).

○ st_blksize: The block size used for file storage (g_blockSize).
○ st_createtime: Set to the creation time of the file or directory.
○ st_modtime: Set to the last modification time of the file or directory.
○ st_size: The total size of the file or directory.

Return Values:

● Returns 0 on success, indicating that the file statistics were successfully retrieved and
stored in the buf structure.

● Returns -1 if the path is invalid or an error occurs while retrieving file information.

Output:

● The function fills the fs_stat structure with the file's or directory's statistics.

Edge Cases:

● Handles cases where the path is invalid or the file/directory cannot be found,
returning -1 in those cases.

Key Assumptions:

● Assumes that the parsePath and loadDir functions correctly resolve and load the
file or directory.

● Assumes that the global variable g_blockSize is properly initialized and holds the
correct block size for file storage.

29

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Milestones:

Milestone 1:

1. A dump (use the provided HexDump utility) of the volume file that shows the VCB,
FreeSpace, and complete root directory.

a. Full Hexdump
b. VCB

000200: 4C 42 0A 00 00 00 00 00 00 00 00 00 00 00 00 00 | .L..............
000210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000220: 00 00 00 00 00 00 00 00 09 00 01 00 00 00 00 00 |
000230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000250: F5 6B C1 FA 00 00 00 00 00 96 98 00 00 02 00 00 | �k��.....��.....
000260: 4B 4C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | KL..............
000270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000330: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000340: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000350: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000360: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000370: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000390: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

Extent
freeSpaceMapLoc
ation[EXTENT_AR
RAY_SIZE];

Size = 10 x 4 Bytes
1st value is 0x 42 4C & 00 0A
blockCount = 0x 42 4C = 16972
blockLocation = 0x 00 0A = 10

Extent
rootLocation[EXT
ENT_ARRAY_SIZE]
;

Size = 10 x 4 Bytes
1st value is 0x 00 09 & 00 01
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

30

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

long long
signature;

Signature =0x 00 00 00 00 FA C1 6B
F5 = 4206980085

unsigned int
totalBytes;

totalBytes = 0x 00 98 96 00 =
9999872

unsigned int
blockSize;

blockSize = 0x 00 00 02 00 = 512

short totalBlocks; totalBlocks = 0x 4C 4B = 19531

c. Directory Entry
000400: 09 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000410: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000420: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |�9......
000430: D7 C1 29 67 00 00 00 00 D7 C1 29 67 00 00 00 00 |��)g....��)g....
000440: D7 C1 29 67 00 00 00 00 2E 00 00 00 00 00 00 00 |��)g............
000450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000480: 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 |t......
000490: 1D 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004B0: 00 00 00 00 00 00 00 00 F0 39 00 00 00 00 00 00 |�9......
0004C0: FB BC 29 67 00 00 00 00 FB BC 29 67 00 00 00 00 |��)g....��)g....
0004D0: FB BC 29 67 00 00 00 00 2E 2E 00 00 00 00 00 00 |��)g............
0004E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000510: 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 |t......
000520: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000530: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000540: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000550: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000560: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000570: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000590: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

31

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
0005B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

Extent
location[EXTENT_
ARRAY_SIZE];

Size = 10 x 4 Bytes
1st value is 0x 00 09 & 00 01
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

unsignedlong
size;

Size = 0x 00 00 00 00 00 00 12 00 =
4608

time_t accessed; 0x 00 00 00 00 67 29 C1 D7 =
1730789847 = Mon Nov 04 2024
22:57:27

time_t modified; 0x 00 00 00 00 67 29 C1 D7 =
1730789847 = Mon Nov 04 2024
22:57:27

time_t created; 0x 00 00 00 00 67 29 C1 D7 =
1730789847 = Mon Nov 04 2024
22:57:27

Char name[65]; 0x 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 2E = 46 = ‘.’

Char isDr; 0x74 = 116 = ‘t’

2. A description of the VCB structure

32

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

a.

b. We are using two Extents for our free space allocation. The first Extent array is a

location of freespace. The second is the location of the Extents. The Signature of

4206980085 to check that the VCB is ours. totalBlocks is the amount of blocks in

our volume. blockSize is the size of our blocks, typically 512. totalBytes is to keep

track fo the total bytes in our volume.

3. A description of the Free Space structure
a. We are using Extents for our free space allocation. To do this, we have a struct

Extent that defines a row of contiguous blocks.

b. Extent contains a blockLocation for where on disk this extent starts, and

blockCount that describes how many contiguous blocks there are.

c.
d. We can use an array of Extents to define which blocks are allocated to a

directory, or which blocks are allocated to free space.
e. Our arrays are terminated by blockCount being 0. We would never allocate an

extent of blockCount = 0, so we are safe to use this as our terminator🤖

33

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

f.

g. Our array

size is not dynamic, and is a macro called EXTENT_ARRAY_SIZE. This array size is

the default formost of our extent arrays, and we use this size for allocating

blocks for DirectoryEntries (files, directories, and blobs) and the freespace map in

VCB.

h.

34

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

i.

j. When we exceed the array size of 10, and we need more blocks, we set the last

array value’s blockCount to -1, and blockLocation to the location of a new block

that we will write more extents to.

k. If we fill that entire block, we create another block called a tertiary block, that

contains an array of block address that each contain an array of extents. We then

go back and change the -1 to be -2, and change the location to the tertiary’s

location.

35

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

l.
m.

4. A description of the Directory system
a. Our directory entry struct allows us to track the metadata for a file or a directory.

We want to track the location which is done using Extents for our space allocation. We

have a variable for name so that the user can interact with the file system. We also like

to track if it is a file or a directory for proper handling of the entry.

createDir()

Return type is a directory or more simply an array of directory entries

Parameters

1. entriesWanted - defines how many entries the user wants to create.

36

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
2. parent - defines the parent of the directory the function will create.

Description- createDir() will take in the amount of entries wanted for the new directory and

ensure that we allocate enough blocks for the amount of entries we want, once we calculated

the blocks, we then can ensure we are not wasting any space in the blocks by filling the block to

the brim with directory entries. At the same time we use the parent parameter to define the “.”

and “..” parent and self directories and then we call the function passing in the new directory to

be written to disk writeDir(newDir) before returning the newdir back to the caller.

writeDir()

void return type

Parameters

1. Directory_Entry* - A directory to be written to disk

Description- will take in a directory and ensure we calculate the correct amount of blocks to

write and will use the first, aka [0], directory entry of the to write to the correct location then

will write to disk return to caller.

5. A table of who worked on which components

Jacob Avinh Hilary Lita Casey

- Director
y
Structur
e

- Volume
Control
block
initiali
zation

- Writeup

- Free
Space

- Freespac
e tests

- All the
.h files

- Globals
- Director

y
Structur
e

- Writeup

- Director
y
Structur
e

- Hexdump
Analysis

- Minimizi
ng
internal
padding
in
structs

- Writeup

- Debugging

37

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

6. How did our team work together, how often we met, how did we meet, how did we
divide up the tasks.

a. How did your team work together, how often you met,
how did you meet, how did you divide up the tasks.
i. We initially had one meeting in person with the

whole group to decide between FAT and Extent file
systems, and we chose extent. We didn’t have
scheduled weekly meetings or anything like that.
The meetings were just suggested as the due date
grew closer. We mostly met online with Lita and
Casey, while Jacob, Avinh, and Hilary met in
person. We didn’t divide up the tasks well;
people just chose what they would work on.

7. A discussion of what issues we faced and how our team resolved them.
a. A discussion of what issues you faced and how your

team resolved them.

i. We just kept pulling all nighters
ii. A lot of jacob juice

Milestone 2: File System Operations

This milestone focuses on implementing core file system operations, with a focus on the ability
to manipulate and interact with directories and files, specifically integrating fsshell to
support basic commands like mkdir, ls, pwd, and cd. Below is a detailed breakdown of how
these operations should be implemented, including key tasks and the functions that need to be
developed.

Key File System Operations to Implement

1. fs_setcwd
○ Purpose: Sets the current working directory to the specified path.
○ Status: Almost complete; needs checks and minor tweaks (e.g., handling of

errors and path validation).
○ Steps:

■ Parse the given path using parsePath.
■ Ensure that the directory exists and is valid.
■ Load the directory entry and set the new current working directory

(g_cwd).

38

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

■ Update the global current working directory path (g_cwd_path),
ensuring both absolute and relative paths are handled.

■ Perform checks for validity (e.g., path not pointing to a file).
2. fs_getcwd

○ Purpose: Returns the current working directory.
○ Status: Completed.
○ Steps:

■ Simply return the g_cwd_path which holds the current directory.
3. fs_isFile

○ Purpose: Checks if a path points to a file.
○ Status: Completed.
○ Steps:

■ Parse the given path using parsePath.
■ Find the matching entry in the directory and check the isDir flag.
■ Return 1 if the file is found and is a regular file (isDir == 'F'),

otherwise return 0.
4. fs_isDir

○ Purpose: Checks if a path points to a directory.
○ Status: Completed.
○ Steps:

■ Parse the path and check if the entry is a directory (isDir == 'T').
■ Return 1 if the path is a directory, otherwise return 0.

5. fs_mkdir
○ Purpose: Creates a new directory at the specified path.
○ Status: Completed.
○ Steps:

■ Parse the path to ensure that the parent directory exists.
■ Allocate space for the new directory entry and create the directory

structure.
■ Add the new directory to the parent directory and update the global file

system structure.

Functions to Implement

These functions are essential to handle directory operations and to complete the command-line
interface for managing files and directories.

1. fs_opendir
○ Purpose: Opens a directory for reading.
○ Steps:

■ Validate the directory path using parsePath.
■ Load the directory entry and prepare to iterate through its contents.

39

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

■ Return a pointer to an fdDir struct, which will hold information about
the directory, including the position in the directory and a pointer to the
directory entries.

2. fs_readdir
○ Purpose: Reads the next entry from an open directory.
○ Steps:

■ Retrieve the current entry from the open directory and fill the
fs_diriteminfo struct.

■ Increment the directory entry position to point to the next entry.
■ Return the filled fs_diriteminfo struct. If there are no more entries,

return NULL.
3. fs_closedir

○ Purpose: Closes an open directory.
○ Steps:

■ Free any resources associated with the fdDir struct.
■ Set the directory pointer to NULL and deallocate memory.

4. fs_stat
○ Purpose: Returns the status of a file or directory (similar to stat in Unix).
○ Steps:

■ Parse the path to retrieve the directory entry.
■ Populate the fs_stat struct with information such as access time,

modification time, size, and block size.
■ Return the populated fs_stat struct.

40

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Interrelationships Between Functions

The core interactions between these functions can be visualized as follows:

● Directory Management: Functions like fs_opendir, fs_readdir, and
fs_closedir form a directory handling subsystem. fs_opendir opens a directory,
fs_readdir reads its contents, and fs_closedir frees resources when done.

● Path Management: Functions like fs_setcwd, fs_getcwd, fs_isFile, and
fs_isDir rely on parsing the path and identifying whether it's a file or directory.
These functions interact with the directory structure to provide information about file
system state.

● File Manipulation: fs_mkdir, fs_delete, and fs_rmdirmanipulate files and
directories by adding or removing entries in the file system.

Conclusion

By implementing these functions, we will provide essential file system capabilities that are
necessary for the shell to interact with directories and files. Functions for manipulating
directories, obtaining file information, and managing the current working directory will be
crucial for the next steps in developing the file system's command-line interface.

41

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Milestone 3:

Key File System Operations to Implement
1. b_open

Purpose: Open existing file, create it if not
○ First checks to see if there is a file or not
○ If not, check for the CREAT flag and write a new file to the parent directory in an

open location
○ If true, check for APPEND or TRUNC flags to either append to the end of a file or

truncate it
○ Allocate the internal buffer
○ Set up variables for the FCB
○ Returns the current FD in the FCB Array

2. b_read
Purpose: Write from external buffer to internal file

○ First checks the file to see if it can even read from it
○ First, it fills into an internal buffer from the provided buffer by the end user
○ This internal buffer calls LBAread in order to read it from the file location
○ Copies all data from our internal buffer to the external buffer
○ Returns total amount of bytes read

3. b_write
Purpose: Write from internal file to external buffer

○ First, checks the file to see if it can write from it
○ Set buffer to chunk size if data does not fit
○ Reset the buffer to remove old characters
○ Copy to internal buffer from external buffer
○ This internal buffer calls LBAwrite in order to write it to the file location
○ Updates any internal variables that track the buffer and file
○ Update modified time, since the file has been modified
○ Return total number of bytes written

4. b_seek
Purpose: Change file index based on whence value

○ Takes a file descriptor, offset, and whence
○ Uses the value of whence to determine the file index
○ Return file index

5. b_close
Purpose: Frees buffer

○ Frees the buffer inside the FCB

Functions to Implement

42

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

1. touch
Purpose: create new file

○ touch implements b_open to create this new file on the SampleVolume
2. cat

Purpose: print file
○ cat implements b_open and b_read in order to read a file from SampleVolume
○ cat only has a limited functionality

3. cp2fs
Purpose: copy file from Linux System to SampleVolume

○ cp2fs implements b_open and b_write to write to a file from the Linux system to
the SampleVolume

○ cp2fs implements open() read() and close() as well
4. cp2l

Purpose: copy file from SampleVolume to Linux System
○ cp2l implements b_open and b_read to write to a file from the SampleVolume to

the Linux system
○ cp2l implements open() write() and close() as well

5. cp
Purpose: copy one file to another

○ cp implements b_open to open both the source and destination files
○ cp implements b_read from the source file, which b_writes into the destination

file

Interrelationships Between Functions

Both CP, CP2L and CP2FS use b_read() and/or b_write() to copy files between each other. Every
single function uses b_open() to open a file, before calling any other b_ commands.

Conclusion

Many functions here use b_read and b_write to both copy from an initial buffer and to an
external buffer, and b_read and b_write are often used to copy in this way, and when files are
transferred on the linux system, they can also be written to the SampleVolume. All functions
here use b_io in order to accomplish what they are required to do.

43

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Issues and Resolutions:

General Issues:

Time_t:

When we were creating our Directory Entry struct, we got a comment suggesting to us to do
timestamps and in class we watched bierman add time_t as a part of the DE struct. However, I
had never used this before so I looked it up and it seems that time_t is a struct that we can
include in our DE, so we did that🙂

https://stackoverflow.com/questions/1444428/time-stamp-in-the-c-programming-language

After this, we needed to split our code into multiple different .h files so that it is readable and
everyone knows all of the function prototypes to use for later. We decided on 3 .h files for
milestone 1: fsInit.h, dir.h, and freespace.h. We concluded this because we want our files to be
loosely coupled, and if we develop our files correctly, the files should be interchangeable with
other file systems. This is following the principle that despite the fact we are doing Ext, the
other systems shouldn’t care about the backend of our freespace.c, and should be able to make
directories, read files, etc. regardless of what file format we have.

After creating our .h files, we ran into the following bug that VolumeControlBlock was not found
despite being imported. This was because we had a circular dependency through all of our .h
files, where fsInit.h dependent on freespace.h, and freespace depended on fsInit. To get around
this, we created a forward declaration of VolumeControlBlock in freespace.h

44

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610
https://stackoverflow.com/questions/1444428/time-stamp-in-the-c-programming-language

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Could not initialize freespace:

After pushing a supposedly working dir.c and dir.h file I pulled the code and ran it it worked fine.
Then I deleted the SampleVolume to remake it and it could not intialize the file system

The fix was that we were returning false when initFreeSpace worked which is not what we want.

We kept running into issues where we couldn’t initialize the global block size (g_blocksize). This
was because it was being called before it was declared in a different file.

45

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

I currently have the issue that the whole way allocate blocks is coded is very bad. I have it
working for block iterations of extents, but I have small edge cases that my code is not prepared
for. Allocate blocks is iterating over the free space array, checking if that could fit in the target,
appending it to the end of the extent array if it does, and then popping the last value of the
freespace to be replaced into the free space array. All of this iterates over the entirety of 3
different extent arrays for every extent being added; this is very slow.

Global Variables showing undefined:

We created a global variable for both the root and the current working directory and as such we
we not expecting any problems from them as they would always be in memory, but as we were
programming other functions that use these functions is that when we load our volume control
block from memory we actually never load into memory our g_root and g_cwd. we believed
that it would take two line of code to set them into memory but found that in order to load the
Directory into memory that we would have to allocate the size of the directory which led to our
next problem of having to LBAread our Directory entry then from there would be able to
calculate the correct number of blocks we are going to have to read from disk for the full entry.
The fix looks like this. Note this error only occurred after our first run meaning when we first
initialized the volume control block as we set both g_cwd and g_root when initializing the VCB.

46

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

47

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Freespace Issues:

48

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Directory Issues:

Make Dr not updating the parent dir with child info

When I was coding up the mkdr fir function I found that the name of the directory was not
being updated by the function it was only changing the name of it in the new dir even then it
was not being updated at the disk. This was due to only having line 38 shown below.

once I figured that the parent needed to be updated i went and found an open space for my
directory entry and updated the values in that space with the new directory items such as the
name of the directory and the location and the rest of the meta data for the directory lines
shown above from 42 to 59.

49

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

fs_readdir not implemented correctly

Here I reinitialized the directory into dirBuf but as I came to my senses and was less sleep
deprived I learned that I already had the directory loaded in ram within the dirp that was
passed I just needed to access it. I also ended up doing an extra malloc for the diriteminfo
named info as I was unsure how to use it so I created an instance of it within my scope which
may have been just a waste of memory but I ended up not updating the other values for the
infostruct. i also was not setting the info->di if it was neither a file nor a dir to null which led to
an infinite loop set in the fs_shell file shown in the photo below.

50

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

51

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

While I am still working I do think that the fix for the infinite loop by setting derp->di to null and
the better use of the dirp deserve to be noted. Here I have simplified the function to reuse
already established structs in my favor, reducing the amount of memory used.

future fixes to this are to figure the correct use of the reclength.

I would also like to make sure that the loop does not stop early because I have derp->di
stopping when it finds an unused directory entry. My current path of thoughts is telling me that
the reclength is the num of entries and if I get to the end of the directory, set the next place to
null and return dirp->di to null.

52

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
mv issues—---
SO many issues

- same parents = misunderstanding of parsepath, used loader to make new entry to
reference

- it only deleted the file and didnt move it and i was focusing on the for loop but then as i
was explaining my issue i release i never wrotedir the new entry i made :D

nested dir issues—--
making a dir in a dir then trying to cd into is broken it only recognizes the first character of the
nested dir and when we cd into it there are 400+ entries inside.
root has two dirs dir1 and dir2: cd into dir1 and md dir3:

cd into dir3 inside dir1:

returns that I’ve cd into a directory called d in
dir1, which has 455 entries when I ls. No current fix
I suspect that it is this line 272

53

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Fixed it was line 272 and also 274 I’m not sure the purpose of those lines because I didn’t write
this function, but I took out 274 and for 272 i changed it from strncat(g_cwd_path, pathname,1)
to just strcat(g_cwd_path, lastElement) because parth path should have already isolated the
directory we wanted.

54

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

B_io issues:

Issue 1 was that the code was originally making files on the disk using open(), read() and write()
to get the File Descriptor instead of using the DirectoryEntry struct. The code should have used
LBAread and LBAwrite in place of read() and write() to write to the SampleVolume and not the
LFS. Both of them write 1 block at a time to SampleVolume

Issue 2 was with CP2L and CP2FS, originally it did not recognize the S_IRUSR (Read by owner) in
the permissions. Fsshell.c imports mfs.h, which imports b_io.h. So in b_io.h I made sure to
include the header file for <sys/stat.h>, which includes the permission, fixing the issue.

Issue 3 stemmed from the Cat command, which was not correctly reading the file. I reworked
b_write to clear the buffer before running, which fixed the issue, not leaving any leftover data
anymore.

Issue 4 stemmed from CP2FS and CP2L only copying the last buffer to the file. I reworked
b_write to use b_seek to find the current byte end of a file using lseek() and will then write to
the end of the previous file. This led to a second issue where it was then reading the first buffer,
and a few characters at the end of the end buffer. This was caused by using B_CHUNK_SIZE in
many places where count should have been used instead, as count is called as 200 in the
function by CP2FS, CP2L and cat. 200 is lower than the chunk size of 512, so it would overwrite
because of that reason, so fixing the math to use count instead of B_CHUNK_SIZE fixed the
issue.

Issue 5 - Malloc did not properly work when trying to create multiple Extents for the same file,
and also the previous “fix” for Issue 4 was not a fix and ended up overwriting our file system. I
ended up having to revert to before the previous “fix”.

md makes it’s own directory appear in ls—--
ls after freshly calling md dir1 and cd into dir1: ls after calling md dir2 in dir1:

55

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

ISSUE IN PROGRESS

56

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Analysis:
What my file system looks like:
Root: dir1: dir2:

57

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

VolumeControlBlock: 1st block

58

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

000200: 30 4C 1C 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0L..............
000210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000220: 00 00 00 00 00 00 00 00 09 00 01 00 00 00 00 00 |
000230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000250: F5 6B C1 FA 00 00 00 00 00 96 98 00 00 02 00 00 | �k��.....��.....
000260: 4B 4C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | KL..............
000270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000330: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000340: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000350: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000360: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000370: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000390: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

59

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Address Type Offset Size Hex Native

Extent freespace
[EXTENT_ARRAY
_SIZE]

000200-
000227

Extent * 0 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
001C 4C30

1st value is 0x001C 4C30
blockCount = 0x 4C 30 =
19504
blockLocation = 0x 00 1C =
28

Extent
rootLocation[EX
TENT_ARRAY_SI
ZE];

000228-
00024A

Extent * 8 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
0001 0009

1st value is 0x 00 09 & 00 01
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

long long
signature;

000250-
000257

long long 0 8 Bytes 0x 00 00 00 00
FA C1 6B F5

= 4206980085

unsigned int
totalBytes;

000258-
00025B

unsigned
int

4 4 Bytes 0x00 98 96 00 = 9999872

unsigned int
blockSize;

00025C-
00025F

unsigned
int

8 4 Bytes 0x00 00 02 00 = 512

unsigned short
totalBlocks;

000260-
000261

unsigned
short

12 2 Bytes 0x4C 4B = 19531

60

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

DirectoryEntries: 2nd-3rd block

2nd Block:
000400: 09 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000410: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000420: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
000430: 21 4D 51 67 00 00 00 00 21 4D 51 67 00 00 00 00 | !MQg....!MQg....
000440: 21 4D 51 67 00 00 00 00 2E 00 00 00 00 00 00 00 | !MQg............
000450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000480: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
000490: 09 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004B0: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
0004C0: 21 4D 51 67 00 00 00 00 21 4D 51 67 00 00 00 00 | !MQg....!MQg....
0004D0: 21 4D 51 67 00 00 00 00 2E 2E 00 00 00 00 00 00 | !MQg............
0004E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000510: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
000520: 09 00 0A 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000530: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000540: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
000550: 2C 4D 51 67 00 00 00 00 2C 4D 51 67 00 00 00 00 | ,MQg....,MQg....
000560: 2C 4D 51 67 00 00 00 00 64 69 72 31 00 00 00 00 | ,MQg....dir1....
000570: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000590: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005A0: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
0005B0: 09 00 13 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005D0: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
0005E0: 2F 4D 51 67 00 00 00 00 2F 4D 51 67 00 00 00 00 | /MQg..../MQg....
0005F0: 2F 4D 51 67 00 00 00 00 64 69 72 32 00 00 00 00 | /MQg....dir2....

3rd block:
000600: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000620: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000630: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
000640: 8B 21 BB 21 06 00 00 00 00 00 00 00 00 00 00 00 | �!�!............
000650: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000660: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000670: 52 4D 51 67 00 00 00 00 52 4D 51 67 00 00 00 00 | RMQg....RMQg....
000680: 52 4D 51 67 00 00 00 00 66 69 6C 65 33 00 00 00 | RMQg....file3...
000690: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006C0: 00 00 00 00 00 00 00 00 00 46 00 00 00 00 00 00 |F......

61

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
0006D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000700: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000710: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000720: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000730: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000740: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000750: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000760: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000770: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000780: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000790: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

1st highlights Address Type Offset Size Hex Native

Extent
location[EXTENT
_ARRAY_SIZE];]

000400-
000427

Extent * 0 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
0001 0009

1st value is 0x001C 4C30
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

unsigned long
size;

000428-
00042F

unsigned
long

8 8 Bytes 0x 0000 0000
0000 1200

= 4608

time_t
accessed;

000430-
000437

time_t 0 8 Bytes 0x 00 00 00 00
67 51 4D 21

= 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t
modified;

000438-
00043F

time_t 8 8 Bytes 0x00 98 96 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t created; 000440-
000447

time_t 0 8 Bytes 0x00 00 02 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

char name[65]; 000448-
000488

char * 8 65 Bytes 0x0000000000
000000000000
000000000000

= .

62

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

000000000000
000000000000
0000002E

char isDir; 449 char 9 1 Byte 0x54 =’T’

3rd highlights Address Type Offset Size Hex Native

Extent
location[EXTENT
_ARRAY_SIZE];]

000400-
000427

Extent * 0 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
0001 0009

1st value is 0x001C 4C30
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

unsigned long
size;

000428-
00042F

unsigned
long

8 8 Bytes 0x 0000 0000
0000 1200

= 4608

time_t
accessed;

000430-
000437

time_t 0 8 Bytes 0x 00 00 00 00
67 51 4D 21

= 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t
modified;

000438-
00043F

time_t 8 8 Bytes 0x00 98 96 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t created; 000440-
000447

time_t 0 8 Bytes 0x00 00 02 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

char name[65]; 000448-
000488

char * 8 65 Bytes 0x0000000000
000000000000
000000000000
000000000000
000000000000
0000002E

= ..

char isDir; 449 char 9 1 Byte 0x54 =’T’

63

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

4th highlights Address Type Offset Size Hex Native

Extent
location[EXTENT
_ARRAY_SIZE];]

000400-
000427

Extent * 0 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
0001 0009

1st value is 0x001C 4C30
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

unsigned long
size;

000428-
00042F

unsigned
long

8 8 Bytes 0x 0000 0000
0000 1200

= 4608

time_t
accessed;

000430-
000437

time_t 0 8 Bytes 0x 00 00 00 00
67 51 4D 21

= 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t
modified;

000438-
00043F

time_t 8 8 Bytes 0x00 98 96 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t created; 000440-
000447

time_t 0 8 Bytes 0x00 00 02 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

char name[65]; 000448-
000488

char * 8 65 Bytes 0x0000000000
000000000000
000000000000
000000000000
000000000000
0000002E

= dir1

char isDir; 449 char 9 1 Byte 0x54 =’T’

1st highlights Address Type Offset Size Hex Native

Extent
location[EXTENT
_ARRAY_SIZE];]

000400-
000427

Extent * 0 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
0001 0009

1st value is 0x001C 4C30
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

unsigned long
size;

000428-
00042F

unsigned
long

8 8 Bytes 0x 0000 0000
0000 1200

= 4608

64

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

time_t
accessed;

000430-
000437

time_t 0 8 Bytes 0x 00 00 00 00
67 51 4D 21

= 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t
modified;

000438-
00043F

time_t 8 8 Bytes 0x00 98 96 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t created; 000440-
000447

time_t 0 8 Bytes 0x00 00 02 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

char name[65]; 000448-
000488

char * 8 65 Bytes 0x0000000000
000000000000
000000000000
000000000000
000000000000
0000002E

= dir2

char isDir; 449 char 9 1 Byte 0x54 =’T’

5th highlights Address Type Offset Size Hex Native

Extent
location[EXTENT
_ARRAY_SIZE];]

000400-
000427

Extent * 0 Extent = 4 Bytes
Extent_array_size
= 10
Total = 4x10 = 40
Bytes

0x 0000 0000
0000 0000
0000 0000
0000 0000
0001 0009

1st value is 0x001C 4C30
blockCount = 0x 00 09 = 9
blockLocation = 0x 00 01 = 1

unsigned long
size;

000428-
00042F

unsigned
long

8 8 Bytes 0x 0000 0000
0000 1200

= 4608

time_t
accessed;

000430-
000437

time_t 0 8 Bytes 0x 00 00 00 00
67 51 4D 21

= 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t
modified;

000438-
00043F

time_t 8 8 Bytes 0x00 98 96 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

time_t created; 000440-
000447

time_t 0 8 Bytes 0x00 00 02 00 = 1733381409 =
Wednesday, December 4,
2024 10:50:09 PM

65

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

char name[65]; 000448-
000488

char * 8 65 Bytes 0x0000000000
000000000000
000000000000
000000000000
000000000000
0000002E

= file3

char isDir; 449 char 9 1 Byte 0x54 =’F’

Screen shot of compilation:

make:

66

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Screen shot(s) of the execution of the program:

make run

67

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

ls

68

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

CP

MV

69

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

70

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

MD

71

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

RM

72

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

TOUCH

73

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

CAT

Doesn’t work

CP2L

Added demo to linux

74

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

Screen shot(s) of the Analysis hexdump:

Dumping file SampleVolume, starting at block 1 for 15 blocks:

000200: 30 4C 1C 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0L..............
000210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000220: 00 00 00 00 00 00 00 00 09 00 01 00 00 00 00 00 |
000230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000250: F5 6B C1 FA 00 00 00 00 00 96 98 00 00 02 00 00 |�k��.....��.....
000260: 4B 4C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | KL..............
000270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0002F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000330: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000340: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000350: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000360: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000370: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000390: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0003F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000400: 09 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000410: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000420: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
000430: 21 4D 51 67 00 00 00 00 21 4D 51 67 00 00 00 00 | !MQg....!MQg....
000440: 21 4D 51 67 00 00 00 00 2E 00 00 00 00 00 00 00 | !MQg............

75

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
000450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000480: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
000490: 09 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004B0: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
0004C0: 21 4D 51 67 00 00 00 00 21 4D 51 67 00 00 00 00 | !MQg....!MQg....
0004D0: 21 4D 51 67 00 00 00 00 2E 2E 00 00 00 00 00 00 | !MQg............
0004E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0004F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000510: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
000520: 09 00 0A 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000530: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000540: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
000550: 2C 4D 51 67 00 00 00 00 2C 4D 51 67 00 00 00 00 | ,MQg....,MQg....
000560: 2C 4D 51 67 00 00 00 00 64 69 72 31 00 00 00 00 | ,MQg....dir1....
000570: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000590: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005A0: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
0005B0: 09 00 13 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0005D0: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
0005E0: 2F 4D 51 67 00 00 00 00 2F 4D 51 67 00 00 00 00 | /MQg..../MQg....
0005F0: 2F 4D 51 67 00 00 00 00 64 69 72 32 00 00 00 00 | /MQg....dir2....

000600: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000620: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000630: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
000640: 8B 21 BB 21 06 00 00 00 00 00 00 00 00 00 00 00 |�!�!............
000650: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000660: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000670: 52 4D 51 67 00 00 00 00 52 4D 51 67 00 00 00 00 | RMQg....RMQg....
000680: 52 4D 51 67 00 00 00 00 66 69 6C 65 33 00 00 00 | RMQg....file3...
000690: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006C0: 00 00 00 00 00 00 00 00 00 46 00 00 00 00 00 00 |F......
0006D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0006F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

76

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven

000700: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000710: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000720: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000730: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000740: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000750: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000760: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000770: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000780: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000790: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0007F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000810: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000820: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000830: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000840: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000850: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000860: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000870: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000890: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0008A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0008B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0008C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0008D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0008E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0008F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000910: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000920: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000930: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000940: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000950: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000960: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000970: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000990: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

77

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
0009A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0009B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0009C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0009D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0009E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0009F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000A00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000A90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000AA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000AB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000AC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000AD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000AE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000AF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000B00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000B90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000BA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000BB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000BC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000BD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000BE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000BF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000C00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

78

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
000C40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000C90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000CA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000CB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000CC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000CD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000CE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000CF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000D00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000D90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000DA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000DB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000DC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000DD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000DE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000DF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000E00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000E90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000EA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000EB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000EC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000ED0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000EE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

79

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
000EF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

000F00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000F90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000FA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000FB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000FC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000FD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000FE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
000FF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0010A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0010B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0010C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0010D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0010E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0010F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001110: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001120: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001130: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001140: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001160: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001170: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

80

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
001190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0011A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0011B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0011C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0011D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0011E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0011F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001250: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001260: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0012A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0012B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0012C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0012D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0012E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0012F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001330: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001340: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001350: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001360: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001370: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001390: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0013A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0013B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0013C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0013D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0013E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0013F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001410: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001420: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

81

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
001430: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001440: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001490: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0014A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0014B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0014C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0014D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0014E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0014F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001510: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001520: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001530: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001540: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001550: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001560: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001570: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001590: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0015A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0015B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0015C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0015D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0015E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0015F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001600: 09 00 0A 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001620: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
001630: 2C 4D 51 67 00 00 00 00 2C 4D 51 67 00 00 00 00 | ,MQg....,MQg....
001640: 2C 4D 51 67 00 00 00 00 2E 00 00 00 00 00 00 00 | ,MQg............
001650: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001660: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001670: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001680: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
001690: 09 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0016A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0016B0: 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 |
0016C0: 21 4D 51 67 00 00 00 00 21 4D 51 67 00 00 00 00 | !MQg....!MQg....
0016D0: 21 4D 51 67 00 00 00 00 2E 2E 00 00 00 00 00 00 | !MQg............

82

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
0016E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0016F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001700: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001710: 00 00 00 00 00 00 00 00 00 54 00 00 00 00 00 00 |T......
001720: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001730: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001740: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001750: 52 4D 51 67 00 00 00 00 52 4D 51 67 00 00 00 00 | RMQg....RMQg....
001760: 52 4D 51 67 00 00 00 00 66 69 6C 65 31 00 00 00 | RMQg....file1...
001770: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001780: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001790: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0017A0: 00 00 00 00 00 00 00 00 00 46 00 00 00 00 00 00 |F......
0017B0: 8B 21 BB 21 06 00 00 00 00 00 00 00 00 00 00 00 |�!�!............
0017C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0017D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0017E0: 52 4D 51 67 00 00 00 00 52 4D 51 67 00 00 00 00 | RMQg....RMQg....
0017F0: 52 4D 51 67 00 00 00 00 66 69 6C 65 32 00 00 00 | RMQg....file2...

001800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001810: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001820: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001830: 00 00 00 00 00 00 00 00 00 46 00 00 00 00 00 00 |F......
001840: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001850: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001860: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001870: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001890: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0018A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0018B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0018C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0018D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0018E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0018F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001910: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001920: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001930: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001940: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001950: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001960: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001970: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

83

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
001980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001990: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0019A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0019B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0019C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0019D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0019E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0019F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001A00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001A90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001AA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001AB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001AC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001AD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001AE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001AF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001B00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001B90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001BA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001BB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001BC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001BD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001BE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001BF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001C00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

84

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
001C20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001C90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001CA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001CB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001CC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001CD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001CE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001CF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001D00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001D90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001DA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001DB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001DC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001DD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001DE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001DF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001E00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001E90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001EA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001EB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001EC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

85

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

Bierman’s Baddies CSC415 Operating Systems
Avinh Huynh, Hilary Lui, Jacob Vazquez, Github: Jacob9610
Lita Hernandez-Gonzalez, Casey Steven
001ED0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001EE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001EF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

001F00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001F90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001FA0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001FB0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001FC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001FD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001FE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
001FF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

86

https://github.com/CSC415-2024-Fall/csc415-filesystem-Jacob9610

