
Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Final Project

Run of the Roadsters

Team Members:
Prince Lucky F. Santos,
Avinh Anthony Huynh,

Hilary Lui,
 Jacob Vazquez

Github Username:

Jacob9610

1

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Bierman Poem
Bierman Bierman

Bierman Bierman

Bierman Bierman

Bierman Bierman

Multithreading, Pipelining,

and Filesystems too

If you don’t P-L-A-N

he will get you

Bierman Bierman

Bierman Bierman

2

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

3

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Description of the Task:

The goal of this project was to design and program an autonomous robot using
a Raspberry Pi to navigate a black-tape-lined course, avoid physical obstacles,
and stop at a red tape marker. The robot integrates multiple sensors and
embedded control logic to operate reliably in real-time.

At startup, the robot remains stationary until its onboard push button is
pressed. Once activated, it uses its IR sensors to detect and follow the black
tape. The robot is capable of handling sharp turns (including 90-degree
corners) while staying aligned with the path and avoiding deviation or reversal.

The HC-SR04 ultrasonic sensor monitors the path ahead for obstacles. When
an obstacle is detected within a predefined distance, the robot initiates an
avoidance routine and then re-aligns itself with the black tape to continue
along the course.

The RGB color sensor plays two key roles: detecting a red tape marker at the
end of the course (which triggers a complete stop and graceful program exit),
and—as a surprise requirement during the final demonstration—detecting a
green tape marker, upon which the robot must perform a full 360-degree turn
before continuing on the path.

This last-minute challenge tested our ability to modify the control logic in real
time.

4

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Building the Robot:

For building the robot, Jacob worked on it for like 2 days 5 days before it
was due, and then I hopped on the project and we spend the next 3 days not
sleeping to grind the whole project out. In some of the pictures you can see
me sleeping on the floor with tape after we were testing it in our house.
Hilary bought me a 4 pack of coffee and earbuds and I consumed like 1000mg
of caffeine of 6 coffees in one day. We spent a lot of time connecting
sensors, reprintgin the car over and over, rewriting the i2c driver and then
realizing we cant have the rgb sensor on the same bus as the motor driver, so
we had to last second pivot to the pi4.

A Whole Lotta photos:

5

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

6

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

7

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Final Version:

8

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Iteration:

Iteration:

9

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Iteration: Jacob V2 of yellow motor chassis

Iteration: Jacob V4 of yellow motor chassis

10

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Parts / Sensors used:
IR SENSOR:

- https://osoyoo.com/fr/2020/09/01/5-channel-ir-tracker-sensor/
- TCRT5000 (provided)

ECHO SENSOR:

RGB SENSOR: TCS whatever

MOTORS:

- Metal motors provided by bierman
- Hook up guide:

https://drive.google.com/file/d/1oODl1KrFR_dQSquRnKi8Wmh0uSoA_Low
/view

11

https://osoyoo.com/fr/2020/09/01/5-channel-ir-tracker-sensor/
https://drive.google.com/file/d/1oODl1KrFR_dQSquRnKi8Wmh0uSoA_Low/view
https://drive.google.com/file/d/1oODl1KrFR_dQSquRnKi8Wmh0uSoA_Low/view

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

How was the bot built:

First we considered our options for various different parts. We knew that we
couldn’t use the chassis provided because we had the goal of being better than
everyone else; if we used the same parts, we would end up the same quality.

We began the build process by designing the robot chassis digitally. Team
members used different CAD tools depending on their expertise and available
devices — Jacob used Shapr3D on an iPad, while Avinh worked in Blender to
refine various parts of the robot's frame.

The 3D-printed components went through multiple iterations to ensure proper
fitting of sensors, motors, and the Raspberry Pi. These print jobs were
completed using a mix of printers available at the SFSU Innovation Hub,
including Creality and Sovol SVO7+ models. We chose whatever machine was
available at the time, leading to flexible but sometimes inconsistent print
settings that required troubleshooting and reprints.

We took into consideration the weight distribution, the distance from wheel to
center of mass to ball caster to get efficient rotations that did not sway our
whole car.

Initial prints had issues such as IR sensor mounts and motor holders not
fitting correctly. Later, the team adjusted the CAD designs for these mounts
and reprinted the parts with better tolerances. The top half of the chassis
broke during testing, which prompted a redesign to thicken the structure and
increase durability.

We also used a ball caster because after researching efficient line racing
robots, that seemed to be the status quo. We also had our own IR Sensor
(that in the end didn’t really make a difference), and metal motors because
they are more precise (but also didn’t really matter because it was slower
than plastic motors).

The final design included:

● Mounts for five front-facing IR sensors and two angled wing IR sensors
to improve line-following performance.

12

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

● Echo sensor holders on the front and side of the chassis for forward
and lateral obstacle detection.

● A Raspberry Pi mount for clean internal wiring and physical protection.

After assembling the final print, components were mounted and secured using
screws and zip ties, especially in areas with high stress or alignment risk. The
switch to metal motors further increased the structural needs, which were
met by strengthening the motor mounts in the CAD model.

13

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

What libraries/software did we use in
our code:

Of course! Here’s a breakdown of the libraries and software you’re using:

● PIGPIO Library: A versatile library for Raspberry Pi that enables
low-level GPIO control, including PWM, interrupts, and precise timing
functions. It’s great for working with sensors, motors, and other
hardware components.
>https://abyz.me.uk/rpi/pigpio/

● Linux I2C Interface: The Linux kernel provides a way to communicate
with I2C devices, allowing you to interact with sensors and drivers using
a standardized interface. It’s a fundamental tool for embedded
systems.

>https://www.kernel.org/doc/Documentation/i2c/dev-interface

● Waveshare Motor Driver HAT: This board helps control DC motors via
I2C, making it easy to manage speed and direction without complex
wiring. It’s useful for robotics and automation projects.
>https://www.waveshare.com/wiki/Motor_Driver_HAT

● Waveshare TCS34725 Color Sensor: A high-accuracy color sensing
module that detects RGB colors and provides readings through the I2C
bus. It’s often used for color detection in robotics and industrial
applications.

>https://www.waveshare.com/wiki/TCS34725_Color_Sensor

14

https://abyz.me.uk/rpi/pigpio/
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.waveshare.com/wiki/Motor_Driver_HAT
https://www.waveshare.com/wiki/TCS34725_Color_Sensor

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Flowchart of our code:

15

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Pin assignments:

Button

Physical Pin / GPIO Pin Button Pins

Physical Pin … / GPIO … VCC (Power)

Physical Pin … / GPIO … IN (Input / Ground)

IR Sensors
VCC Pin for all Echo Sensors: Physical Pin 4 / 5V Power

16

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

GND Pin for all Echo Sensors: Physical Pin 6 / GND

Physical Pin / GPIO Pin Associated IR Sensor For IN

Physical Pin 29 / GPIO 5 Leftmost (No. 1)

Physical Pin 31 / GPIO 6 Left from middle (No. 2)

Physical Pin 33 / GPIO 13 Middle (No. 3)

Physical Pin 35 / GPIO 19 Right from middle (No. 4)

Physical Pin 37 / GPIO 26 Rightmost (No. 5)

Bierman Board for Metal Motors

Physical Pin / GPIO Pin Bierman Board Pins

Physical Pin 4 / 5V 5V

Physical Pin 6 / GND GND

Physical Pin 19 / GPIO 10 MOSI

Physical Pin 21 / GPIO 9 MISO

Physical Pin 23 / GPIO 11 SCLK

Echo Sensors
VCC Pin for all Echo Sensors: Physical Pin 2 / 5V Power
GND Pin for all Echo Sensors: Physical Pin 14 / GND

Physical Pin / GPIO Pin Associated Echo Sensor for
TRIG

Physical Pin 13 / GPIO 27 Left

Physical Pin 15 / GPIO 22 Middle

17

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Physical Pin 16 / GPIO 23 Right

Physical Pin / GPIO Pin Associated Echo Sensor for
ECHO

Physical Pin 36 / GPIO 16 Left

Physical Pin 38 / GPIO 20 Middle

Physical Pin 40 / GPIO 21 Right

RGB Sensor

Physical Pin / GPIO Pin RGB Sensor Pins

Physical Pin 1 / 3V3 3V3

Physical Pin 9 / GND GND

Physical Pin 3 / GPIO 3 (SDA) SDA (I2C Data Input)

Physical Pin 5 / GPIO 4 (SCL) SCL (I2C Clock Pin)

Physical Pin 23 / GPIO 11 Interrupt Output (Open drain
output)

Physical Pin 32 / GPIO 12 Light emitting Diode

18

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Hardware Diagram:

19

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

What worked well:

The PID-based line-following logic worked consistently after fine-tuning,
especially with the corrected sensor inversion logic. Our sensors return HIGH
on black tape, so we inverted the values before passing them to the PID
controller.

Upgrading to metal motors and powering them separately with an external
battery noticeably improved speed and maneuverability.

The modular sensor mounting system made it easy to iterate on hardware
design.

Adding wing IR sensors significantly improved the robot’s ability to handle
sharp (90+ degree) turns.

Implementing a physical button for starting the robot was simple but effective
for testing and demonstration.

Follow the Line PID algorith => Found a function to do things and
translated that into our algorithm

Threading => IR Sensors could be done all at once as well as Echo
Sensors

20

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Issues and Solution we came across:
Sensor Management and Threading:

● Initially, each sensor had its own thread, which overwhelmed the
Raspberry Pi Zero. We resolved this by consolidating sensor reads into
grouped threads — one for IR sensors and one for Echo sensors — which
improved performance and stability.

I2C Bus Conflicts:

● Sharing the same I2C bus for the motor controller and RGB sensor
caused communication failures. To resolve this, we switched to a
Raspberry Pi 4, which allowed for separate I2C buses and isolated
device control.

CAD and Print Issues:

● Several redesigns were required due to misfit parts and printing errors.
We refined the CAD models after testing, learned proper 3D printing
settings, and reprinted components successfully.

IR Sensor Logic:

● At first, the PID was behaving incorrectly due to misunderstanding the
sensor output logic (default high). Once we realized this, we corrected
the data processing by negating IR sensor readings before passing them
to the PID loop.

Obstacle Avoidance:

● Our original forward-facing ultrasonic sensors had limited detection
range for lateral objects. We relocated one sensor to the side
(perpendicular to the forward sensor) for better obstacle detection
during avoidance maneuvers.

Structural Failures:

21

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

● The top half of the robot chassis cracked during testing. We reinforced
this area in the next print iteration and secured weak points using zip
ties, which held up well.

Sharp Turns:

● The robot struggled with 90-degree turns. Initially, we tried a simple
pause method during turns, but it proved unreliable. We implemented
logic to “repeat the last extreme turn” (e.g., hard left or right) when
the robot lost line detection, which improved cornering performance.

Power Limitations:

● The motors were underpowered when driven from the Pi’s onboard
power. Introducing an external power source to the motors dramatically
improved the robot’s performance.

Realized that the Pi might not be able to handle the number of thread
we have for each individual sensor => Combine all reads of the IR
sensors and Echo sensors into their own one thread

Having trouble using our Rasbperry Pi Zero for our car => Switched to
the larger Rasbperry Pi 2 for multiple I2C buses

How to do Object avoidance with a car that have its echo sensors in
front of it

22

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Having trouble with detecting 90 degree turns with our current 5 sensor
array => Need to add 2 new wings IR sensors to allow for this

23

Bombastic Bierman Club
CSC615: Embedded Linux 05/20/2025

Object detection might be difficult without current array of echo
sensors => Move the rightmost one to be perpendicular to the one facing
forwards // Have a sensor be on the side of the car

24

	
	Final Project
	Run of the Roadsters
	

	Bierman Poem
	
	
	

	Description of the Task:
	

	Building the Robot:
	

	Parts / Sensors used:
	

	How was the bot built:
	

	What libraries/software did we use in our code:​
	

	Flowchart of our code:
	

	Pin assignments:
	

	Hardware Diagram:
	

	What worked well:
	

	Issues and Solution we came across:

